You may have seen us around in Florence with our test vehicle, a noticeable Malaguti Spidermax 500 equipped with laser scanner and a number of other gadgets.
The aim of this activity is to ride in real traffic conditions and evaluate the capabilities of standard technology to monitor the occurrence of possible inevitable collision states in relevant situations such as a car following scenario.
Showing posts with label giovanni savino. Show all posts
Showing posts with label giovanni savino. Show all posts
Wednesday, 25 May 2016
On road tests
Labels:
experiments,
fun,
giovanni savino,
MAEB,
motorcycle,
naturalistic,
prototype,
PTW,
safety,
test
Friday, 4 March 2016
Can we observe realistic emergency manoeuvres in a riding simulator?
Can we induce realistic emergency reactions in a motorcycle simulator?
In a new experiment conducted at the Driving Simulator facilities of the Monash University Accident Research Centre, 15 riders had to face an unexpected imminent collision scenario while simulating a relaxing ride in the countryside. The group of riders included commuters, recreational riders, and professional riders such as trainers and Police riders.
Where they able to react properly or did they panic? Or rather: was the motorcycole simulator developed for the ABRAM project able to induce realistic reactions?
The results of this experiment will be crucial to determine whether tests with a simple and reproducible simulator such as the ABRAM simulator can be used to learn more about typical riders' reactions when facing inevitable collision situations. Additional knowledge in this field is fundamental to inform the design of last resort safety systems such as MAEB. In particular, MAEB activation should be designed to deal with any situation: the system should not interfere with a collision avoidance attempted by the rider, nor exacerbate the risks of severe crash outcomes in case of a panic reaction of the rider.
Labels:
crash,
emergency,
experiments,
giovanni savino,
MAEB,
motorcycle,
naturalistic,
PTW,
rider,
risk,
safety,
simulator,
study,
test
Location:
Clayton VIC 3168, Australia
Friday, 31 July 2015
ABRAM Periodic Report - Publishable Summary
(From the official document submitted to the European Commission)
Mobility is vital for the quality of life and efficient transport is an important goal for the European Commission. An increased use of motorcycles and mopeds - also known as powered two wheelers (PTW) - instead of passenger cars for the needs of personal mobility would result in more efficient utilisation of road and parking space, less pollution, and time savings. However, the risks of being seriously injured or killed are higher for PTW riders than for other motorized road users. In particular, the European Road Safety Observatory (ERSO) indicated that the risk of incurring into a fatal crash while riding a PTW per km travelled is 12 times higher than for driving a passenger car. Passenger cars have benefitted of many new safety technologies, some of which at a later stage were translated to motorcycles – occasionally with proven success, for example antilock brake system. At present, one of the most advanced safety systems available is Autonomous Emergency Braking (AEB). AEB is designed to recognise an impending collision and then apply brakes when the driver does not. AEB effectiveness was recently demonstrated for cars, and AEB is promoted as safety feature by NCAP and a range of government bodies. However, AEB is currently not available for motorcycles and its possible applicability is unknown.
In this context, the ABRAM project (Autonomous Braking for Motorcycles, June 2013-May 2016) proposed a broad exploration of AEB applied to PTWs. ABRAM aimed to address the main aspects linked to the evaluation and implementation of autonomous braking for PTWs in order to create scientific bases for a possible development of this safety system.
The outgoing phase of ABRAM – conducted by Chief Investigator Dr Giovanni Savino at the Monash University Accident Research Centre, Melbourne, Australia – was completed in May 2015. During this two-year period, three main activities were carried out.
The first activity (WP2) focused on the development of an idealised AEB for motorcycles. It considered the applicability of AEB to real-world crashes; then it developed triggering algorithms to address typical crash configuration, and fìnally it evaluated the potential benefits of AEB for motorcycles via computer simulations of real world crash cases which took place in three different countries: Italy, Sweden and New South Wales (Australia).
The second activity (WP3) analysed the feasibility of a mild, unexpected automatic deceleration of the motorcycle, such as the one produced by AEB, from the viewpoint of the rider. An experimental study involving an instrumented test vehicle and participant riders was conducted. Bosch Australia supported this activity by providing access to a low-speed test track and providing logistical support for the tests.
The third activity (WP4) focused on the possible interactions between AEB intervention and rider control actions during the pre-crash phase. Good knowledge of the rider behaviour is a crucial element for the design of the safety system. For this reason, a low-cost motorcycle riding simulator was developed and validated specifically for investigating the control inputs of riders when facing unexpected hazards.
Results of ABRAM research showed that the idealised AEB has good potential for an application to real world motorcycle crashes. Estimated applicability ranged from 28% to 32% when analysing computer simulations of 212 in-depth crash cases that took place in Europe and Australia. Also, the impact speed reduction produced by AEB on the host motorcycle was up to 7 km/h in the simulations. As a final outcome, the speed reduction produced by AEB is expected to produce injury mitigation for the riders. However, risk curves for motorcycle riders are currently not available in the literature, giving scope for future studies in this field to confirm the potential benefits of AEB.
Concerning the feasibility of an automatic deceleration event, ABRAM tests involved a sample of sixteen participants and showed that standard riders can sustain a moderate deceleration – such as the one produced by cutting the engine ignition - with minor-to-moderate efforts even when the event is unexpected. Although limited in scope due to the small sample and due to the simple procedure adopted, these encouraging findings are the first available on this topic and warrant future investigations. Additional tests should also analyse the interaction between rider and safety system in hazardous situations, for example due to sudden obstacles. The ABRAM riding simulator was validated appositely for this kind of tests and will foster future experiments in this field.
The ABRAM project has already shown an impact on the scientific community and the society. First, a number of scientific papers were presented on journals and at technical conferences, including the following:
Mobility is vital for the quality of life and efficient transport is an important goal for the European Commission. An increased use of motorcycles and mopeds - also known as powered two wheelers (PTW) - instead of passenger cars for the needs of personal mobility would result in more efficient utilisation of road and parking space, less pollution, and time savings. However, the risks of being seriously injured or killed are higher for PTW riders than for other motorized road users. In particular, the European Road Safety Observatory (ERSO) indicated that the risk of incurring into a fatal crash while riding a PTW per km travelled is 12 times higher than for driving a passenger car. Passenger cars have benefitted of many new safety technologies, some of which at a later stage were translated to motorcycles – occasionally with proven success, for example antilock brake system. At present, one of the most advanced safety systems available is Autonomous Emergency Braking (AEB). AEB is designed to recognise an impending collision and then apply brakes when the driver does not. AEB effectiveness was recently demonstrated for cars, and AEB is promoted as safety feature by NCAP and a range of government bodies. However, AEB is currently not available for motorcycles and its possible applicability is unknown.
In this context, the ABRAM project (Autonomous Braking for Motorcycles, June 2013-May 2016) proposed a broad exploration of AEB applied to PTWs. ABRAM aimed to address the main aspects linked to the evaluation and implementation of autonomous braking for PTWs in order to create scientific bases for a possible development of this safety system.
The outgoing phase of ABRAM – conducted by Chief Investigator Dr Giovanni Savino at the Monash University Accident Research Centre, Melbourne, Australia – was completed in May 2015. During this two-year period, three main activities were carried out.
The first activity (WP2) focused on the development of an idealised AEB for motorcycles. It considered the applicability of AEB to real-world crashes; then it developed triggering algorithms to address typical crash configuration, and fìnally it evaluated the potential benefits of AEB for motorcycles via computer simulations of real world crash cases which took place in three different countries: Italy, Sweden and New South Wales (Australia).
The second activity (WP3) analysed the feasibility of a mild, unexpected automatic deceleration of the motorcycle, such as the one produced by AEB, from the viewpoint of the rider. An experimental study involving an instrumented test vehicle and participant riders was conducted. Bosch Australia supported this activity by providing access to a low-speed test track and providing logistical support for the tests.
The third activity (WP4) focused on the possible interactions between AEB intervention and rider control actions during the pre-crash phase. Good knowledge of the rider behaviour is a crucial element for the design of the safety system. For this reason, a low-cost motorcycle riding simulator was developed and validated specifically for investigating the control inputs of riders when facing unexpected hazards.
Results of ABRAM research showed that the idealised AEB has good potential for an application to real world motorcycle crashes. Estimated applicability ranged from 28% to 32% when analysing computer simulations of 212 in-depth crash cases that took place in Europe and Australia. Also, the impact speed reduction produced by AEB on the host motorcycle was up to 7 km/h in the simulations. As a final outcome, the speed reduction produced by AEB is expected to produce injury mitigation for the riders. However, risk curves for motorcycle riders are currently not available in the literature, giving scope for future studies in this field to confirm the potential benefits of AEB.
Concerning the feasibility of an automatic deceleration event, ABRAM tests involved a sample of sixteen participants and showed that standard riders can sustain a moderate deceleration – such as the one produced by cutting the engine ignition - with minor-to-moderate efforts even when the event is unexpected. Although limited in scope due to the small sample and due to the simple procedure adopted, these encouraging findings are the first available on this topic and warrant future investigations. Additional tests should also analyse the interaction between rider and safety system in hazardous situations, for example due to sudden obstacles. The ABRAM riding simulator was validated appositely for this kind of tests and will foster future experiments in this field.
The ABRAM project has already shown an impact on the scientific community and the society. First, a number of scientific papers were presented on journals and at technical conferences, including the following:
* Further development of motorcycle autonomous emergency braking (MAEB), what can in-depth studies tell us?
* A novel approach for evaluating the potential benefits of motorcycle autonomous emergency braking (MAEB) in real world crashes
* Can Experienced Riders Benefit from an Autonomous Emergency Braking System?
Second, Dr Savino featured in popular on-line articles on the web and was involved in TV and radio segments - on BSB Australia, where he talked about motorcycle safety technologies and especially autonomous emergency braking; on radio ABC Melbourne, where he described the potential benefits and the challenges of autonomous emergency braking applied to motorcycles.
The research of ABRAM also featured in a number of the MIRI Big Impact, the magazine showcasing the best research conducted at the Monash Injury Research Centre. In addition, Dr Savino has arranged frequent exchanges with industrial stakeholders in the field of motorcycles for transferring the new knowledge produced within ABRAM and thus fostering the development of safety innovations.
The return phase of ABRAM (1st June 2015 – 31st May 2016) will be conducted by Dr Savino primarily at his host institution, the University of Florence, Italy. Three main activities are planned for this period. First, a sensitivity analysis will investigate the robustness of AEB and its effectiveness with respect of different pre-crash conditions, as well as different technologies used for the implementation of this safety system. Second, a naturalistic study will analyse the performance and the critical elements of a prototype AEB system in real traffic conditions. In particular, the obstacle detection system and the control logic will be tested (no autonomous braking event will be deployed at this stage). And final, a cost benefit analysis will be performed.
* A novel approach for evaluating the potential benefits of motorcycle autonomous emergency braking (MAEB) in real world crashes
* Can Experienced Riders Benefit from an Autonomous Emergency Braking System?
Second, Dr Savino featured in popular on-line articles on the web and was involved in TV and radio segments - on BSB Australia, where he talked about motorcycle safety technologies and especially autonomous emergency braking; on radio ABC Melbourne, where he described the potential benefits and the challenges of autonomous emergency braking applied to motorcycles.
The research of ABRAM also featured in a number of the MIRI Big Impact, the magazine showcasing the best research conducted at the Monash Injury Research Centre. In addition, Dr Savino has arranged frequent exchanges with industrial stakeholders in the field of motorcycles for transferring the new knowledge produced within ABRAM and thus fostering the development of safety innovations.
The return phase of ABRAM (1st June 2015 – 31st May 2016) will be conducted by Dr Savino primarily at his host institution, the University of Florence, Italy. Three main activities are planned for this period. First, a sensitivity analysis will investigate the robustness of AEB and its effectiveness with respect of different pre-crash conditions, as well as different technologies used for the implementation of this safety system. Second, a naturalistic study will analyse the performance and the critical elements of a prototype AEB system in real traffic conditions. In particular, the obstacle detection system and the control logic will be tested (no autonomous braking event will be deployed at this stage). And final, a cost benefit analysis will be performed.
Labels:
autonomous,
braking,
effectiveness,
emergency,
experiments,
giovanni savino,
MAEB,
mitigation,
motorcycle,
prototype,
PTW,
reconstruction,
rider,
risk,
safety,
simulations,
simulator,
technology,
test,
validation
Monday, 6 April 2015
Thank you MUARC
The 'outgoing phase' of ABRAM at the Monash University Accident Research Centre has ended in March 2015.
I take this opportunity to thank all the Staff at MUARC for the great time I had, and for all the support I received.
See you soon!
Thursday, 19 February 2015
ABRAM motorcycle riding simulator is getting ready for the tests
The motorcycle riding simulator built for ABRAM is getting ready for validation and testing.
First impressions were promising. Despite its simplicity, the motorcycle rig mounted on D Box motion base provides adequate feeling to the rider.
First impressions were promising. Despite its simplicity, the motorcycle rig mounted on D Box motion base provides adequate feeling to the rider.
Labels:
dynamics,
experiments,
fun,
giovanni savino,
MAEB,
motorcycle,
naturalistic,
rider,
simulator,
technology,
test,
vehicle
Monday, 3 November 2014
Should autonomous emergency braking become mandatory on motorcycles?
At this stage, I cannot make recommendations about a future introduction of MAEB on the market.
But a controversial statement was reported in an interesting article about autonomous emergency braking for motorcycles (also known as MAEB). We read that:
technology/monash-universitys- giovanni-savino-wants- automatic-motorcycle-braking- to-cut-road-deaths/story- fnjwpv39-1227104010687?nk= 685385775bb118aead2367c2cbb451 13
[last update: 10 November 2014]
But a controversial statement was reported in an interesting article about autonomous emergency braking for motorcycles (also known as MAEB). We read that:
"A MELBOURNE university doctor has called for automatic emergency braking technology to become compulsory on motorcycles as figures show riders continue to be over-represented in fatal crashes."http://www.heraldsun.com.au/
I was contacted by the journalist Joshua Dowling who interviewed me over the phone on 13th October 2014. This interview was done in the occasion of the presentation of one of my recent studies about the effectiveness of autonomous emergency braking for motorcycle at the AAAM annual meeting (link to the paper).
I must clarify that I did not say "autonomous emergency braking should become compulsory on motorcycles". This safety functionality is promising, and that is why I believe it should be further investigated. However, its potential effectiveness in terms of crash injury reduction for riders is currently unclear.
I have expressed my opinion about MAEB also in a recent radio interview by Red Symons on ABC Melbourne.
[last update: 10 November 2014]
Labels:
autonomous,
braking,
controversial,
effectiveness,
emergency,
forum,
giovanni savino,
interview,
mandatory,
motorcycle,
opinion,
PTW,
radio
Subscribe to:
Posts (Atom)